Abstract

Environmental obesogens contributed significantly to the obesity prevalence. Recently, antibiotics joined the list of environmental obesogens, while the underlying mechanisms remained to be explored. In the present study, effects of erythromycin (ERY), one widely used macrolide antibiotic, were measured on C. elegans to investigate the obesogenic mechanism. Results showed that ERY at 0.1 μg/L significantly increased the fat content by 17.4% more than the control and also stimulated triacylglycerol (TAG) levels by 25.7% more than the control. Regarding the obesogenic mechanisms, ERY provoked over-eating by stimulation on the pharyngeal pumping and reduction on the satiety quiescence percentage and duration. Such effects were resulted from stimulation on the neurotransmitters including serotonin (5-HT), dopamine (DA) and acetylcholine (ACh). The nervous responses involved the up-regulation of Gsα (e.g., ser-7, gsa-1, acy-1 and kin-2) signaling pathway and the down-regulation of TGFβ (daf-7) but not via cGMP-dependent regulations (e.g., egl-4). Moreover, ERY stimulated the activities of fatty acid synthase (FAS) and glycerol-3-phosphateacyl transferases (GPAT) that catalyze lipogenesis, while ERY inhibited those of acyl-CoA synthetase (ACS), carnitine palmitoyl transferase (CPT) and acyl-CoA oxidase (ACO) that catalyze lipolysis. The unbalance between lipogenesis and lipolysis resulted in the fat accumulation which was consistent with up-regulation on mgl-1 and mgl-3 which are the down-steam of TGFβ regulation. Such consistence supported the close connection between nervous regulation and lipid metabolism. In addition, ERY also disturbed insulin which connects lipid with glucose in metabolism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.