Abstract

BackgroundIn vitro and animal experiments reported a microbiota-regulating ability of oatmeal, however, related in vivo evidences remained limited. Thus, we conducted this study aiming to investigate the oatmeal-induced alteration of gut microbiota and its potential relationship with the improvements of lipid profiles.Methods and study designData of anthropometric measurements and biochemical parameters were extracted from a randomized, controlled clinical trial, in which 62 hypercholesterolemic men and women (18–65 years old) were provided with either treatment of 80 g/day oatmeal or 80 g/day refined white rice for 45 days. Fasting blood samples and fecal samples were collected both at baseline and endpoint of the study for lipid profiling and microbiota 16S rRNA amplicon sequencing, respectively.ResultsTotally 28 participants (56 fecal samples) qualified with the new criteria and were thus included in this secondary analysis. The results of microbiota analysis showed that no significant difference was observed in the alteration of its overall α or β diversity between two groups throughout the study. Nor did any notable between-group difference was found in the relative abundance changes of microorganism at different taxonomies. However, results from linear discriminant analysis effect size in the oatmeal group indicated a significant positive response of Firmicutes phylum following oatmeal consumption. Further Procrustes analysis suggested a concordance trend between microorganism alteration and alleviation of hypercholesterolemia phenotypes throughout the study (P = 0.05). The results of within-group comparison from Spearman’s correlation in the oatmeal group demonstrated a significant association between the enrichment of Blautia genus and the reduction of serum total cholesterol (P < 0.05), low-density lipoprotein cholesterol (P < 0.01), and apolipoprotein B (P < 0.05).ConclusionsPositive response of Firmicutes phylum might be a critical characteristic of oatmeal-induced alteration of microbiota, whereas, one of the underlying cholesterol-lowering mechanism of oatmeal consumption might be its microbiota-manipulating ability, in which the enrichment of Blautia genus played a potentially significant role. Current results should be taken cautiously and more studies were needed for further verification.Trial registration: ChiCTR, ChiCTR180001864. Registered 30 September 2018, http://www.chictr.org.cn/showproj.aspx?proj=31469.

Highlights

  • Oatmeal, being abundant with fermentable fiber, was assumed to be able to influence the composition of microbiota by many ways, such as utilizing the discrepancy of processing capacity in different energy substrates or changing intestinal microenvironment like pH [1]

  • Positive response of Firmicutes phylum might be a critical characteristic of oatmeal-induced alteration of microbiota, whereas, one of the underlying cholesterol-lowering mechanism of oatmeal consumption might be its microbiota-manipulating ability, in which the enrichment of Blautia genus played a potentially significant role

  • Changes of dietary intakes and physical activity during study period Compared to the control group, the fiber intake was notably increased in the oatmeal group throughout study (6.7 ± 1.5 g/day vs. 0.6 ± 1.4 g/day, P < 0.01), and results from within-group comparisons confirmed the critical role of fiber intake surge from the oatmeal group (7.12 ± 1.41 g/day vs. 13.78 ± 0.73 g/day, P < 0.01) in accounting for this significant between-group difference

Read more

Summary

Introduction

Oatmeal, being abundant with fermentable fiber, was assumed to be able to influence the composition of microbiota by many ways, such as utilizing the discrepancy of processing capacity in different energy substrates or changing intestinal microenvironment like pH [1]. Current evidences supported that gut microbiota regulation toward enhancing proportion of beneficial members of microorganism community might be a novel and promising ecological strategy for hypercholesterolemia management [2,3,4]. These evidences provided a new perspective, that oatmeal was potentially able to regulate microbiota effectively and its microbiota-manipulating ability might be an underlying mechanism of its hypocholesterolaemic effect. In vitro and animal experiments reported a microbiota-regulating ability of oatmeal, related in vivo evidences remained limited. We conducted this study aiming to investigate the oatmeal-induced alteration of gut microbiota and its potential relationship with the improvements of lipid profiles

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.