Abstract

BackgroundEstimating energy requirements (ER) is crucial for nutritional attention to chronic kidney disease (CKD) patients. Current guidelines recommend measuring ER with indirect calorimetry (IC) when possible. Due to clinical settings, the use of simple formulas is preferred. Few studies have modeled equations for estimating ER for CKD. Nevertheless, variables of interest such as nutritional status and strength have not been explored in these models. This study aimed to develop and validate a model for estimating REE in patients with CKD stages 3–5, who were not receiving renal replacement therapy (RTT), using clinical variables and comparing it with indirect calorimetry as the gold standard.MethodsIn this study 80 patients with CKD participated. Indirect calorimetry (IC) was performed in all patients. The calorimeter analyzed metabolic measurements every minute for 15 min after autocalibration with barometric pressure, temperature, and humidity. Bioelectrical Impedance Analysis (BIA) was performed. Fat-free mass (FFM) was registered among other bioelectrical components. Handgrip strength (HGS) was evaluated and an average of 3 repetitions was recorded. Nutritional status was assessed with the subjective global assessment (SGA). Patients categorized as B or C were then considered as having malnutrition.ResultsWe analyzed 71 patients and 3 models were generated. Model 1a included FFM; Model 2a included weight; Model 3c included handgrip strength (HGS). All other variables were stepwise, computer-selected with a p < 0.01 significance level; Malnutrition was consistently associated with ER among other clinical variables in all models (p < 0.05). The model that included BIA-FFM had R2 adjusted = 0.46, while the model that included weight (Kg) had an adjusted R2 adjusted = 0.44. The models had moderate concordance, LC = 0.60–0.65 with the gold standard, whereas other energy expenditure estimation equations had LC = 0.36 and 0.55 with indirect calorimetry. Using these previously validated equations as a reference, our models had concordance values ranging from 0.66 to 0.80 with them.ConclusionModels incorporating nutritional status and other clinical variables such as weight, FFM, comorbidities, gender, and age have a moderate agreement with REE. The agreement between our models and others previously validated for the CKD patient is good; however, the agreement between the latter and IC measurements is moderate. The KDOQI lowest recommendation (25 Kcals/kg body weight) considering the 22% difference with respect to the IC for total energy expenditure rather than for REE.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.