Abstract

Organismal fitness is partly determined by how well the nutritional intake matches sex-specific metabolic requirements. Metabolism itself is underpinned by complex genomic interactions involving products from both nuclear and mitochondrial genomes. Products from these two genomes must coordinate how nutrients are extracted, used and recycled, processes vital for fuelling reproduction. Given the complicated nature of metabolism, it is not well understood how the functioning of these two genomes is modulated by nutrients. Here we use nutritional geometry techniques on Drosophila lines that only differ in their mtDNA, with the aim to understand if there is nutrient-dependent mitochondrial genetic variance for male reproduction. We first find genetic variance for diet consumption, indicating that flies are consuming different amounts of food to meet new physiological requirements. We then find an interaction between mtDNA and diet for fitness, suggesting that the mtDNA plays a role in modulating diet-dependent fitness. Our results enhance our basic understanding of nutritional health and our chimeric genomes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.