Abstract

BackgroundPreterm birth (<37 gestational weeks) poses a risk of poorer neurocognitive functioning. Faster growth after preterm birth predicts better cognitive abilities and can be promoted through adequate nutrition, but it remains unknown whether variations in nutrient intakes translate into long-term benefits for neurodevelopment.MethodsIn 86 participants of the Helsinki Study of Very Low Birth Weight Adults (birthweight <1500g), we examined if higher intakes of energy, macronutrients, and human milk during the first nine weeks after preterm birth predict performance in tests of cognitive ability at 25.1 years of age (SD = 2.1).Results10 kcal/kg/day higher total energy intake at 3 to 6 weeks of age was associated with 0.21 SD higher adult IQ (95% Confidence Interval [CI] 0.07–0.35). Higher carbohydrate and fat intake at 3–6 weeks, and higher energy intake from human milk at 3–6 and at 6–9 weeks were also associated with higher adult IQ: these effect sizes ranged from 0.09 SD (95% CI 0.01–0.18) to 0.34 SD (0.14–0.54) higher IQ, per one gram/kg/day more carbohydrate and fat, and per 10 kcal/kg/day more energy from human milk. Adjustment for neonatal complications attenuated the associations: intraventricular hemorrhage, in particular, was associated with both poorer nutrition and poorer IQ.ConclusionIn preterm neonates with very low birth weight, higher energy and human milk intake predict better neurocognitive abilities in adulthood. To understand the determinants of these infants' neurocognitive outcome, it seems important to take into account the role of postnatal nutrition, not just as an isolated exposure, but as a potential mediator between neonatal illness and long-term neurodevelopment.

Highlights

  • Preterm birth poses a risk of poorer neurocognitive functioning

  • In 86 participants of the Helsinki Study of Very Low Birth Weight Adults, we examined if higher intakes of energy, macronutrients, and human milk during the first nine weeks after preterm birth predict performance in tests of cognitive ability at 25.1 years of age (SD = 2.1)

  • 10 kcal/kg/day higher total energy intake at 3 to 6 weeks of age was associated with 0.21 SD higher adult IQ (95% Confidence Interval [CI] 0.07–0.35)

Read more

Summary

Introduction

Preterm birth (before 37 gestational weeks) poses a risk of poorer neurocognitive functioning. [1,2,3,4] Explaining this vulnerability are factors that underlie and result from preterm birth, including pregnancy complications and immaturity-related health problems All these factors can reflect on slow neonatal growth, which predicts poorer adult neurocognitive outcome. One set of studies included preterm individuals with birth weight

Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.