Abstract

Nutrient concentrations and seasonal differences in atomic ratios (N:P) in plant tissue of Posidonia coriacea Kuo and Cambridge and Zostera tasmanica Aschers (formerly Heterozostera tasmanica (Syst Bot 27 (2002) 468) were measured from multiple locations on Success Bank, southwestern Australia, and used to infer nutritional constraints on seagrass vegetative growth, particularly by phosphorus. Posidonia plant tissue at the west site had higher nitrogen than the east site in both summer and winter. Nitrogen concentrations increased in winter, particularly in sheath tissue, but there was little change in root nitrogen concentrations between sites or seasons. Nitrogen concentrations of leaf tissue were all less than median seagrass values reported by Duarte (Mar Ecol Prog Ser 67 (1990) 201). The seasonality in nutrient concentrations in plant tissues suggests greater nutritional constraints in summer, during periods of high growth. Vegetative growth of Posidonia coriacea was more nutrient limited than that of Zostera tasmanica. Translocation of nutrients along rhizomes to the apex may ensure that growing points are not nutrient limited and that growth can be maintained, and was more apparent in Z. tasmanica than P. coriacea. Sexual reproduction placed large demands on P. coriacea through the high investment of nutrients into fruit, resulting in reduced nutritional constraints on successful seedling recruitment by initially providing seedlings with nutrients.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.