Abstract

The incretin hormones gastric inhibitory polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) augment postprandial glucose-mediated insulin release from pancreatic beta-cells. The Goto-Kakizaki (GK) rat is a widely used, lean rodent model of Type 2 diabetes; however, little is known regarding the incretin secretion profile to different nutrients in these rats. We have recently shown that lymph is a sensitive medium to measure incretin secretion in rodents and probably the preferred compartment for GLP-1 monitoring. To characterize the meal-induced incretin profile, we compared lymphatic incretin concentrations in the GK and Wistar rat after enteral macronutrient administration. After cannulation of the major mesenteric lymphatic duct and duodenum, each animal received an intraduodenal bolus of either a fat emulsion, dextrin, a mixed meal, or saline. Lymph was collected for 3 h and analyzed for triglyceride, glucose, GLP-1, and GIP content. There was no statistical difference in GIP or GLP-1 secretion after a lipid bolus between GK and Wistar rats. Dextrin and a mixed meal both increased incretin concentration area under the curve, however, significantly less in GK rats compared with Wistar rats (dextrin GIP: 707 +/- 106 vs. 1,373 +/- 114 pg ml(-1) h, respectively, P < 0.001; dextrin GLP-1: 82.7 +/- 24.3 vs. 208.3 +/- 26.3 pM/h, respectively, P = 0.001). After administration of a carbohydrate-containing meal, GK rats were unable to mount as robust a response of both GIP and GLP-1 compared with Wistar rats, a phenomenon not seen after a lipid meal. We propose a similar, glucose-mediated incretin secretion pathway defect of both K and L cells in GK rats.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.