Abstract

Author SummaryEukaryotes—fungi, plants, animals, and many unicellular organisms—are defined by the presence of a cell nucleus that contains the chromosomes and is enveloped by a lipid membrane lined on the inner face with a protein network called the lamina. Among other functions, the lamina serves as an anchorage site for the ends of chromosomes. In multicellular animals (metazoa), the lamina comprises a few related proteins called lamins, which are very important for many functions related to the nucleus; abnormal lamins result in multiple nuclear defects and diseases, including inappropriate gene expression and premature aging. Until now, however, lamins had been found only in metazoa; no protein of equivalent function had been identified in plants, fungi, or unicellular organisms. Here, we describe a protein from African trypanosomes—the single-cell parasites that cause sleeping sickness—that fulfils many lamin-like roles, including maintaining nuclear structure and organizing the chromosomes of this organism. We show that this protein, which we call NUP-1 for nuclear periphery protein-1, is vital for the antigenic variation mechanisms that allow the parasite to escape the host immune response. We propose that NUP-1 is a lamin analogue that performs similar functions in trypanosomes to those of authentic lamins in metazoa. These findings, we believe, have important implications for understanding the evolution of the nucleus.

Highlights

  • Eukaryotic genomes are primarily organized as linear chromosomes and further segregated into transcriptionally active euchromatin and repressed heterochromatin [1,2,3]

  • A single NUP-1 syntenic orthologue was present in each trypanosomatid genome examined (Figure 1, Table S1), each exhibiting the same structure as NUP-1 but varying in size and number of repeats; the repeats within each NUP-1 orthologue are nearly identical but diverge significantly between species

  • While structures that resemble the nucleoskeletal metazoan lamina and heterochromatin are recognized in many eukaryotic lineages, the lamin proteins themselves are clearly restricted to the metazoa [7,15], and no lamina components have been unequivocally identified to date in any non-metazoan organism

Read more

Summary

Introduction

Eukaryotic genomes are primarily organized as linear chromosomes and further segregated into transcriptionally active euchromatin and repressed heterochromatin [1,2,3]. In metazoa such chromatin organization requires the coiled-coil lamins, intermediate filament proteins that form a stable meshwork between the nuclear envelope (NE) and nuclear matrix, physically associating with peripheral heterochromatin [2,4,5]. Lamins directly participate in nuclear pore complex (NPC) positioning, maintenance of nuclear structure, spindle assembly, and control of developmental gene expression programs [6,7,8,9].

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.