Abstract

In spite of extensive experimental and numerical investigations on steel shear walls, many ambiguities regarding the behavior of these walls still exist. One of these unknown characteristics, which have been less researched, is the effect of cracks on system behavior. Experimental studies have reported fracture on the corner of Steel Plate Shear Walls (SPSW) during testing. Therefore, the present paper deals with seismic performance of cracked SPSW in linear and nonlinear zones. The extended finite element method based on cohesive crack approach is used in Finite Element (FE) modeling. FE results indicated that small initial crack does not have considerable effect on the behavior of SPSW. Since SPSW is ruptured due to crack with long length, it cannot be utilized as a lateral resisting system in high seismic zone although long initial crack does not have a considerable effect on R-factor. Moreover, the horizontal crack is more effective than vertical crack. In addition, a method for predicting the trend of the load–displacement diagram has been proposed. The obtained results show a high convergence of the proposed approach with the results of the finite element method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.