Abstract
We introduce a new efficient importance sampler for nonlinear non-Gaussian state space models. We propose a general and efficient likelihood evaluation method for this class of models via the combination of numerical and Monte Carlo integration methods. Our methodology explores the idea that only a small part of the likelihood evaluation problem requires simulation. We refer to our new method as numerically accelerated importance sampling. The method is computationally and numerically efficient, facilitates parameter estimation for models with high-dimensional state vectors, and overcomes a bias-variance trade-off encountered by other sampling methods. An elaborate simulation study and an empirical application for U.S. stock returns reveal large efficiency gains for a range of models used in financial econometrics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.