Abstract

The dependence of transistor characteristics on grain boundary (GB) position in short-channel ZnO thin film transistors (TFTs) has been investigated using two-dimensional numerical simulations. To simulate the device accurately, both tail states and deep-level states are taken into consideration. It is shown that both the transfer and output characteristics of ZnO TFTs change dramatically with varying GB position, which is different from polycrystalline Si (poly-Si) TFTs. By analysing the mechanism of the carrier transportation in the device, it is revealed that the dependence is derived from the degrees of carrier concentration descent and mobility variation with GB position.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.