Abstract

BackgroundDue to the complexity of airways and the limitation of experiments, the production mechanism of the lung sounds in airways has not been fully understood, which often confuses diagnosis. MethodA 3D geometrical model of human airways (G5-G8) has been developed based on Weibel's model. Simulation on transient airflow and the noise production during exhalation under different breathing intensities (Q = 15, 30, 45, 60, 75, 90 L/min) has been carried out with Direct Noise Computation (DNC) and Ffowcs Williams-Hawkings (FW-H) method. Results(1) The junctions between airways are most likely to produce lung sounds, and the peak value is located in the junction between G7 and G6 at the middle of exhalation (about 0.75 s). (2) With the increase in breathing intensity, the average sound pressure level first increases, reaches the peak value at 70–75 L/min, and then drops. (3) Higher breathing intensity is helpful to produce the feature of wheezing, namely a comparatively higher sound pressure level in the range of 200–500 Hz. Moreover, this feature is prominent with the increase in breathing intensity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.