Abstract

A numerical code to simulate mass transfer effects on spherical cavitation bubble collapse in an acoustic pressure domain in quiescent water has been developed. Gilmore equation is used to simulate bubble dynamics, with considering mass diffusion and heat transfer. Bubbles with different initial radii were considered in quiescent infinite water in interaction with sinusoidal shock waves with different magnitudes of amplitude and frequency. Simulations were done in two cases; with and without considering mass transfer. Good agreement with reference data was achieved. For bubbles with small radii in high frequency pressure field with low amplitude, mass transfer causes larger maximum radii and growth time, and more violent resultant collapse. Decreasing pressure frequency or increasing its amplitude causes larger maximum radii, longer collapse time, and more violent collapse. But, in cases with mass transfer because at the last moments of collapse stage a large amount of water vapor is trapped inside the bubble, the collapse will become less violent. For larger bubbles collapse becomes more violent for the cases without mass transfer in all pressure amplitudes and higher frequencies. But decreasing pressure frequency makes the collapse of the bubbles with mass transfer more violent. However, mass transfer effects decreases with increasing initial bubble radius.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.