Abstract
It is necessary to manage the fatigue crack growth (FCG) once those cracks are detected during in-service inspections. This is particular critical as high strength steels are being used increasingly in ship and offshore structures. In this paper, a simulation program (FCG-System) is developed utilizing the commercial software ABAQUS with its object-oriented programming interface to simulate the fatigue crack path and to compute the corresponding fatigue life. In order to apply FCG-System in large-scale marine structures, the substructure modeling technique is integrated in the system under the consideration of structural details and load shedding during crack growth. Based on the nodal forces and nodal displacements obtained from finite element analysis, a formula for shell elements to compute stress intensity factors is proposed in the view of virtual crack closure technique. Neither special singular elements nor the collapsed element technique is used at the crack tip. The established FCG-System cannot only treat problems with a single crack, but also handle problems with multiple cracks in case of simultaneous but uneven growth. The accuracy and the robustness of FCG-System are demonstrated by two illustrative examples. No stability and convergence difficulties have been encountered in these cases and meanwhile, insensitivity to the mesh size is confirmed. Therefore, the FCG-System developed by authors could be an efficient tool to perform fatigue crack growth analysis on marine structures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.