Abstract
CH4–CO2 fueled solid oxide fuel cells (SOFCs) are the high-efficiency and low-carbon power generation technology. However, carbon deposition severely hinders its application. Here, the numerical model considering the complex anode CH4 internal reforming reactions, H2 electrochemical reaction, gas diffusion and charge transfer of SOFC using CH4–CO2 fuel has been established. The CH4–CO2 internal reforming and electrochemical reactions of SOFC under different CO2/CH4 ratios and temperatures are studied to reveal the optimal operating conditions. The distributions of different reaction rates, gas components and carbon deposition activity at the anode are analyzed. The results show that the increase of CO2 concentration can decrease the carbon activity but also cause the decrease of electrochemical performance. It is found that the good comprehensive performances including power density, carbon activity and methane conversion rate can be achieved under the CO2/CH4 molar ratio of 1. The thermodynamic calculation of three different methane reforming modes shows that CH4–CO2 reforming leads to the greatest carbon deposition risk compared with CH4–H2O and CH4–O2 reforming, implying the importance of anti-carbon for CH4–CO2 fueled SOFC.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.