Abstract
To further improve the absorption of thin-film silicon solar cells (TFSSCs), it is essential to understand what kind of texture morphology could present the best light trapping effect, or rather, which structural parameter plays the most important role, and offers the required lateral feature size, height or others. In this paper, the influences of structural parameters of conical two-dimensional photonic crystal (2D PC) on each-layer absorption of the microcrystalline silicon thin film solar cells are numerically studied by using the finite-difference time-domain method when 2D PC is introduced into the intrinsic layer. The results show that both the intrinsic absorption and parasitic absorption are significantly enhanced via introduction of 2D PC into the intrinsic layer. The parasitic absorption is mainly caused by the ITO layer, and the intrinsic absorption shows a sinusoidal fluctuation with the increase of period. It is found that the aspect ratio (height/period) of the 2D PC has a decisive influence on the cell intrinsic absorption. When the period of the 2D PC is less than 1m, the intrinsic absorption first increases and then decreases with the increase of the aspect ratio, and reaches a maximum value with an aspect ratio of 1. For the case of period larger than 1m, the aspect ratio needed to obtain the maximum result is smaller than 1. What is more, the larger the period, the smaller the aspect ratio for maximizing the intrinsic absorption will be. The peak intrinsic absorption can be obtained when a 2D PC with a period of 0.5m and an aspect ratio of 1 is introduced. Compared with that of the flat cell, the short-circuited current density of the above optimized 2D PC cell can be significantly enhanced by 5.8 mA/cm2(from 21.9 to 27.8 mA/cm2), corresponding to a relative enhancement of 27%. In order to improve antireflection performance, it is critical to adopt a textured front-surface morphology where the aspect ratio is higher than 1/2. In addition, the intrinsic absorption increases with the increasing fill factor, and reaches a maximum value when the fill factor of the 2D PC is close to 0.9. The research results of this paper break through the traditional viewpoint of light trapping mechanism which points out that the light trapping effect is mainly dependent on the lateral feature size of the texture, and provide an important guide for obtaining optimized random or periodic texture via experiment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.