Abstract

The effects of the combined utilization of wavy wall and different nanoparticle shapes in heat transfer fluid for a thermoelectric generator (TEG) mounted vented cavity are numerically analyzed. A triangular wave form of the cavity is used, while spherical and cylindrical-shaped alumina nanoparticles are used in water up to a loading amount of 0.03 as solid volume fraction. The impacts of wave amplitude on flow and output power features are significant compared to those of the wave number. The increment in the generated power is in the range of 74.48–92.4% when the wave amplitude is varied. The nanoparticle shape and loading amount are effective in the rise of the TEG power, while by using cylindrical-shaped nanoparticles, higher powers are produced as compared to spherical ones. The rise in the TEG power by the highest loading amount is achieved as 50.7% with cylindrical-shaped particles, while it is only 4% with spherical-shaped ones. Up to a 194% rise of TEG power is attained by using the triangular wavy form of the wall and including cylindrical-shaped nanoparticles as compared to a flat-walled cavity using only pure fluid.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.