Abstract

The singular behaviour at the free edges of the fibre-matrix interface is analysed for the fibre push-out test geometry based on the boundary element method. The fibre push-out test has been extensively used to measure the fibre-matrix interfacial properties in polymer, ceramic and metal matrix composites. There are two free edges in the fibre push-out specimen: one is at the loaded fibre end and the other at the supported fibre end. The singular stresses can be expressed as a function of singular exponent and singular stress intensity. It is shown that the singular exponents obtained at both fibre ends are characteristic of composite constituent properties, such as Young's moduli of fibre and matrix, and does not vary with specimen dimensions. The singular exponents are real and identical for the shear and radial stress components at fibre ends where the wedge angles are the same. The singular stress intensities are also implicit in material properties, and vary with specimen dimensions, such as fibre to matrix radius ratio, fibre aspect ratio and support hole size. An interfacial failure criterion is proposed here based on the average stress concept to determine the critical singular stress intensities in mode I and mode II loads.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.