Abstract
In this paper, an incompressible two-dimensional shear flow past a square cylinder problem is investigated numerically using a higher order compact finite difference scheme. Simulations are presented for three sets of Reynolds numbers, 100, 200, and 500, with various shear parameter (K) values ranging from 0.0 to 0.4. The purpose of the present study is to elaborate the influence of shear rate on the vortex shedding phenomenon behind the square cylinder. The results presented here show that the vortex shedding phenomenon strongly depends on Re as well as K. The strength and size of vortices shed behind the cylinder vary as a function of Re and K. When K is larger than a critical value, the vortex shedding phenomenon has completely disappeared depending on the Reynolds number. Apart from the numerical study, a thorough theoretical investigation has been done by using a topology based structural bifurcation analysis for unsteady flow separations from the walls of the cylinder. Through this analysis, we study the exact locations of the bifurcation points associated with secondary and tertiary vortices with appropriate non-dimensional time of occurrence. To the best of our knowledge, this is the first time, a topological aspect based structural bifurcation analysis has been done to understand the vortex shedding phenomenon and flow separation for this problem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.