Abstract
To understand how vegetation canopies affect sediment transport on tidal flats, a numerical study of tidal flow and sediment transport on an idealized tidal flat with a patch of vegetation is conducted. The numerical model is firstly validated by laboratory measurements of flow and sediment deposition in a partially vegetated open channel. The idealized study shows that a finite patch of vegetation may produce circulation on the tidal flat with converging flow during flood and diverging flow during ebb. The vegetation patch can also generate a tidal phase lag between the vegetated and bare flats. Tidal currents in both zones are asymmetric, with stronger flood current in the vegetated zone and stronger ebb current on the bare flat. The duration of ebb is longer than that of flood. Computed sediment concentration on the bare flat is higher during ebb due to stronger ebb current and larger bottom shear stress. This is in contrast to the tidal flat without a vegetation canopy, where suspended sediment concentration is higher during flood. On the tidal flat without a vegetation canopy, landward net sediment transport occurs on the upper flat, while seaward net sediment transport occurs on the lower flat and subtidal region. On the partially vegetated tidal flat, however, net sediment transport on both the upper and lower flats are in seaward direction. It increases with increasing vegetation density. Alongshore net sediment flux converges inside the canopy and diverges on the bare flat. Sediment exchange rate between the vegetated and bare flats increases with decreasing vegetation density and sediment settling velocity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.