Abstract

In this work, a numerical technique based on two-dimensional incompressible computations and vortex sound theory is applied to investigate the flow-acoustic interaction in T-joints, which can lead to resonances in piping systems with closed side branches. The impact of aspects such as the flow direction and edge geometry is analyzed. In spite of the fact that the CFD simulations have a low-Reynolds number, the numerical results are consistent with experimental observations available in the literature, which confirms that the method can be useful for engineering applications, as it provides physically meaningful information at a low computational cost. © 2010 by the authors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.