Abstract

A systematic process analysis was conducted to study the effect of the main variables in an industrial electrostatic desalter, such as electric field intensity, wash water content, droplet size, and oil viscosity, on the efficiency of the separation of water from oil. The analysis was assessed through an already published and validated CFD multiphase numerical model that considers the expression of the frequency of collisions as a function of the mentioned process variables. Additionally, the study allowed the formal optimization exercise of the operation to maximize the separation efficiency. The most significant variables were the initial water content and the electric field intensity, while the temperature (oil viscosity) had an effect to a lower extent. An increase in the electric field and temperature and a decrease in the water content improved the water separation from oil. Optimum values suggested from the factorial experimental design and the optimization implemented in this work indicated the use of an electric field of 3 kV/cm, water content of 3%, and an oil viscosity of 0.017 kg/ms. At the same time, the droplet size showed no significant effect under the conditions explored in this work.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.