Abstract

The interaction of small heavy solid particles with turbulence near the wall of a vertical downward channel flow is investigated by using direct numerical simulation (DNS) and Lagrangian particle tracking. The interest is focused on the effect of the particles on the near-wall coherent structures obtained by conditional sampling of DNS results of a particle-laden turbulent channel flow. The coherent structures are detected from instantaneous flow fields by using the vortex definition of Jeong and Hussain [J. Fluid Mech. 285, 69 (1995)]. The Reynolds number of the particle-free flow is Reτ≈180 based on the friction velocity and the wall half distance. The particle response time is 200 wall units and the average mass and volume fractions φm=0.5 and φv=6.8×10−5, respectively. The particle diameter is smaller than the Kolmogorov length scale and the grid spacing, the latter being small enough to adequately resolve the smaller fluid flow scales. The feedback effect of the particles on the carrier phase is taken into account by a point-force model. Purely elastic interparticle collisions are also considered. For both particle-free and particle-laden flows, the dominant coherent structures in the near-wall region are elongated quasistreamwise vortices. The addition of particles results in a weaker mean structure, with larger diameter and longer streamwise extent. The qualitative characteristics of the velocity distributions around the mean coherent structures are similar, independent of the particles. However, the coherent velocity fluctuations in the wall-normal and spanwise directions considerably decrease, and the low-speed streak is damped by the particles. The educed results show that the particles create a torque of opposite sign to the rotation of the mean vortex, which in turn reduces the streamwise vorticity of the structure. Consequently, the magnitude of fluid pressure decreases and the redistribution of turbulent kinetic energy from the streamwise to the other velocity components is significantly reduced.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.