Abstract

Transient mode locking of spiking solid-state lasers is studied with the help of two theoretical approaches. The first of them is an extension of the previous transient theory with single-mode rate equations to find the limited spike build-up time depending on the modulation index. The second is based on semiclassical multimode equations describing both spiking behaviour and formation of the picosecond pulse from the initial noise. The derivation of the equations as well as a comparison of results from both approaches are given. The obtained numerical results agree with experimental data. It is shown that the pulsewidth in a spiking laser can approach the small value predicted by the steady-state theory. This minimal pulsewidth can be reached at a smaller modulation index than predicted by the standard transient mode locking theory. The minimal modulation index for generation of good picosecond pulses free of noise is found to be ∼0.6 in our case. Losses connected with amplitude modulation have a negligible effect on spike build-up time and pulse duration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.