Abstract

A near-perfect absorber for the visible regime based on metal-dielectric-metal subwavelength grating structure with the refractory metals is designed and demonstrated numerically. The absorber presents an average absorption over 98.4% in the visible regime at normal incidence. Angle-relative analysis shows that the proposed structure has good angle-tolerance. The high average absorption (86.6%) in the visible region can be maintained with the incident angles up to 60°. Through the analysis of the magnetic field, the physical origin is verified that this excellent absorption performance mainly stems from the cooperative effect of surface plasmonic resonances and the intrinsic broadband spectral responses by the refractory metals. In addition, the dependence of the absorption spectrum of the proposed absorber on the structural parameters is analyzed. This work provides an idea for the design of high-performance absorbers and has potential applications in advanced light energy capture and integration systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.