Abstract

Heat and mass transfer in variable thermal conductivity micropolar axisymmetric stagnation enrobing flow on a cylinder is studied. Numerical solutions are obtained with an optimized variational finite element procedure and also a finite difference method. Graphical variations of velocity, angular velocity, temperature and concentration are presented for the effects of Reynolds number, viscosity ratio, curvature parameter, Prandtl number and Schmidt number. Excellent agreement is obtained for both finite element method (FEM) and finite difference method (FDM) computations. Further validation is achieved with a Chebyshev spectral collocation method (SCM). Skin friction is elevated with greater Reynolds number whereas it is suppressed with increasing micropolar parameter. Heat transfer rate decreases with an increase in the thermal conductivity parameter. Temperature and thermal boundary layer thickness is reduced with increasing thermal conductivity parameter and Reynolds number. Greater Reynolds number accelerates the micro-rotation values. Higher Schmidt number reduces the mass transfer function (species concentration) values. The mathematical model is relevant to polymeric manufacturing coating (enrobing) flows.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.