Abstract

A second-order accurate numerical method has been proposed for the solution of a coupled non-linear oscillator featuring in chemical kinetics. Although implicit by construction, the method enables the solution of the model initial-value problem (IVP) to be computed explicitly. The second-order method is constructed by taking a linear combination of first-order methods. The stability analysis of the system suggests the existence of a Hopf bifurcation, which is confirmed by the numerical method. Both the critical point of the continuous system and the fixed point of the numerical method will be seen to have the same stability properties. The second-order method is more competitive in terms of numerical stability than some well-known standard methods (such as the Runge–Kutta methods of order two and four).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.