Abstract

The traditional second-order Fokker–Planck equation may not adequately describe the movement of solute in an aquifer because of large deviation from the dynamics of Brownian motion. Densities of α-stable type have been used to describe the probability distribution of these motions. The resulting governing equation of these motions is similar to the traditional Fokker–Planck equation except that the order α of the highest derivative is fractional. In this paper, a space fractional Fokker–Planck equation (SFFPE) with instantaneous source is considered. A numerical scheme for solving SFFPE is presented. Using the Riemann–Liouville and Grünwald–Letnikov definitions of fractional derivatives, the SFFPE is transformed into a system of ordinary differential equations (ODE). Then the ODE system is solved by a method of lines. Numerical results for SFFPE with a constant diffusion coefficient are evaluated for comparison with the known analytical solution. The numerical approximation of SFFPE with a time-dependent diffusion coefficient is also used to simulate Lévy motion with α-stable densities. We will show that the numerical method of SFFPE is able to more accurately model these heavy-tailed motions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.