Abstract

This paper investigates the linear stability of the flow in the two-dimensional boundary-layer flow of the Carreau fluid over a wedge. The corresponding rheology is analysed using the non-Newtonian Carreau fluid. Both mainstream and wedge velocities are approximated in terms of the power of distance from the leading edge of the boundary layer. These forms exhibit a class of similarity flows for the Carreau fluid. The governing equations are derived from the theory of a non-Newtonian fluid which are converted into an ordinary differential equation. We use the Chebyshev collocation and shooting techniques for the solution of governing equations. Numerical results show that the viscosity modification due to Carreau fluid makes the boundary layer thickness thinner. Numerical results predict an additional solution for the same set of parameters. Thus, a further aim was to assess the stability of dual solutions as to which of the solutions can be realized. This leads to an eigenvalue problem in which the positive eigenvalues are important and intriguing. The results from eigenvalues form tongue-like structures which are rather new. The presence of the tongue means that flow becomes unstable beyond the critical value when the velocity ratio is increased from the first solution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.