Abstract

In this paper, approximate solutions to a class of fractional differential equations with delay are presented by using a semi-analytical approach in Hilbert function space. Further, the uniqueness of the solution is proved in the space of real-valued continuous functions, as well as the existence of the solution is proved in Hilbert function space. We also prove convergence and perform an analysis error for the proposed approach. Sophisticated delay differential equations of fractional order are considered as test examples. Numerical results illustrate the efficiency of the proposed approach computationally.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.