Abstract
Abstract In this paper, we propose a novel approach for the numerical solution of fractional-order ordinary differential equations. The method is based on the infinite state representation of the Caputo fractional differential operator, in which the entire history of the state of the system is considered for correct initialization. The infinite state representation contains an improper integral with respect to frequency, expressing the history dependence of the fractional derivative. The integral generally has a weakly singular kernel, which may lead to problems in numerical computations. A reformulation of the integral generates a kernel that decays to zero at both ends of the integration interval leading to better convergence properties of the related numerical scheme. We compare our method to other schemes by considering several benchmark problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.