Abstract
In this paper, we consider the numerical inverse Laplace transform for distributed order time-fractional equations, where a discontinuous Galerkin scheme is used to discretize the problem in space. The success of Talbot’s approach for the computation of the inverse Laplace transform depends critically on the problem’s spectral properties and we present a method to numerically enclose the spectrum and compute resolvent estimates independent of the problem size. The new results are applied to time-fractional wave and diffusion-wave equations of distributed order.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.