Abstract

The Darcy ternary hybrid nanofluid flow comprising titanium dioxide (TiO2), cobalt ferrite (CoFe2O4) and magnesium oxide (MgO) nanoparticles (NPs) through wedge, cone, and plate surfaces is reported in the present study. TiO2, CoFe2O4, and MgO NPs were dispersed in water to synthesize a trihybrid nanofluid. For this purpose, a mathematical model was calculated to augment the energy transport rate and efficiency for variety of commercial and medical functions. The consequences of heat source/sink, activation energy, and the magnetic field are also analyzed. Such problems mostly occur in symmetrical phenomena and are applicable to engineering, physics, and applied mathematics. The phenomena were formulated in the form of a nonlinear system of PDEs, which are simplified to the system of dimensionless ODEs through similarity replacement (obtained from symmetry analysis). The obtained set of differential equations is resolved through a parametric continuation approach (PCM). Graphical depictions are used to evaluate and address the impact of significant factors on energy, mass, and flow exchange rates. The velocity and energy propagation rates over a cone surface were greater than those of a wedge and plate versus the variation of Grashof number, porosity effect, and heat source, while the mass transfer ratio under the impact of a chemical reaction and activation energy over a wedge surface was higher than that of a plate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.