Abstract

Mesoscale meteorological modeling is an important tool to help understand the energy budget of the oasis, while some of its initial field data are rough limited to describe the atmosphere and land conditions over a small oasis. Local factors including land surface parameters and their interaction with the atmosphere play a dominant role in the local circulation. Therefore, in this study, land surface parameters such as land‐use types, vegetation cover fraction, and surface layer soil moisture are derived by satellite remote sensing data from EOS Moderate Resolution Imaging Spectroradiometer (EOS/MODIS), and soil moisture at 10 cm and 200 cm depth are obtained by combining surface layer soil moisture with experiential statistics. Then the parameters are used to specify the respective options in the MM5 model. Comparison with the observations shows that the modeling including satellite values leads to improved meteorological simulations in the Jinta oasis, both for the oasis effect and the local wind circulation, especially for description of the inhomogeneous characteristics over the oasis. Replacing values in the initial field with data obtained from remote sensing removes the number of unknowns in the model and increases the accuracy of the energy budget. This work is a very valuable addition to current numerical research on local circumfluence over the oasis areas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.