Abstract

We study the numerical approximation of a 2d fluid–structure interaction problem stabilizing the fluid flow around an unstable stationary solution in presence of boundary perturbations. The structure is governed by a finite number of parameters and a feedback control law acts on their accelerations. The existence of strong solutions and the stabilization of this fluid–structure system were recently studied in [3]. The present work is dedicated to the numerical simulation of the problem using a fictitious domain method based on extended Finite Element [4]. The originality of the present work is to propose efficient numerical tools that can be extended in a simple manner to any fluid-structure control simulation. Numerical tests are given and the stabilization at an exponential decay rate is observed for small enough initial perturbations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.