Abstract

Mass transfer coefficient is an important parameter in the process of mass transfer. It can reflect the degree of enhancement of mass transfer process in liquid–solid reaction and in non-reactive systems like dissolution and leaching, and further verify the issues by experiments in the reaction process. In the present paper, a new computational model quantitatively solving ultrasonic enhancement on mass transfer coefficient in liquid–solid reaction is established, and the mass transfer coefficient on silicon surface with a transducer at frequencies of 40kHz, 60kHz, 80kHz and 100kHz has been numerically simulated. The simulation results indicate that mass transfer coefficient increases with the increasing of ultrasound power, and the maximum value of mass transfer coefficient is 1.467×10−4m/s at 60kHz and the minimum is 1.310×10−4m/s at 80kHz in the condition when ultrasound power is 50W (the mass transfer coefficient is 2.384×10−5m/s without ultrasound). The extrinsic factors such as temperature and transducer diameter and distance between reactor and ultrasound source also influence the mass transfer coefficient on silicon surface. Mass transfer coefficient increases with the increasing temperature, with the decreasing distance between silicon and central position, with the decreasing of transducer diameter, and with the decreasing of distance between reactor and ultrasound source at the same ultrasonic power and frequency. The simulation results indicate that the computational model can quantitatively solve the ultrasonic enhancement on mass transfer coefficient.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.