Abstract

An explicit algebraic stress model (EASM) was used to simulate anisotropic turbulent flows in baffled stirred tanks equipped with a standard Rushton turbine. The quantitative predictions of velocity components, turbulence kinetic energy, Reynolds stresses and turbulence energy dissipation rate in the context of anisotropic turbulence were conducted to assess the comprehensive performance of the EASM. A lot of efforts have been made to ensure numerical stability during the calculations such as using a good initial flow field, manipulating source terms and adjusting under-relaxation factors. The predicted results were also compared with experimental data and other simulation results obtained using the standard k– ε model, algebraic stress model (ASM), Reynolds stress model (RSM) and large eddy simulation (LES). All the simulations were run with in-house codes. The simulation results show that agreement between the EASM predictions and experimental values is satisfactory. The EASM is consistently superior to the standard k– ε model when predicting both peak values and trend of variation in velocities and turbulence quantities. In comparison to the RSM, the EASM has almost the same predictive accuracy. The EASM is inferior to the LES on the prediction of turbulence kinetic energy. Nevertheless, the computational cost of the EASM is significantly lower than that of the LES, which is an obvious advantage in practical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.