Abstract

Three-dimensional numerical simulation was developed to investigate thermocapillary flow induced by non-uniform evaporation on the meniscus in capillary tubes. Capillary tube radiuses ranging from 0.1 to 1 mm were considered and the working liquid was methanol. The effects of tube size, evaporation heat flux and buoyancy on thermocapillary flow were investigated. The results show that the non-uniform evaporation on the meniscus leads to two opposite temperature gradients along the radial direction, which generate two thermocapillary flow vortexes under the meniscus. For horizontal capillary tubes with r0 ≥ 0.32 mm, the path-lines in the vertical center plane are asymmetrical, which is attributed to the combined buoyancy and thermocapillary effects. For the vertical capillary tube, with increasing average evaporation heat flux, the steady axisymmetrical flow will gradually transit to a steady asymmetrical flow and eventually becomes a three-dimensional oscillatory flow.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.