Abstract

The unsteady loads in a tube bundle are studied at moderate and high Reynolds number by means of URANS and hybrid (DDES) modelling. The onset of fluid-elastic instability is analysed for different structural parameters, Scruton number and reduced velocity. The simulations have been carried out with the code NSMB (Navier–Stokes Multi Block) by using turbulence modelling methods URANS and DDES (Delayed Detached Eddy Simulation). The CEA-DIVA configuration is considered for the cylinders array for an inter-tube Reynolds number 60000. The study is carried out for a configuration of (4×5) cylinders in static conditions as well as for the vertical free motion of one of the central cylinders in one DOF (Degree Of Freedom).The inter-tube Reynolds number is 60000. It is found that this cylinder spontaneously displays an oscillatory motion which first corresponds to Vortex Induced Vibration (VIV), associated to a lock-in mechanism for low values of the reduced velocity and secondly develops Movement Induced Vibration, MIV, for higher values of the reduced velocity. The variation of the cylinder׳s oscillations frequency, of the unsteady loads and the structure׳s displacement are studied as a function of the reduced velocity for low and high values of the Scruton number. The increase of the phase-lag between the forces and the displacement is predicted and discussed for different Scruton number values and reduced velocities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.