Abstract

We employed a hybrid approach to study numerically the translocation of a biopolymer through an artificial nano-pore driven by an external electric field in the presence of an explicit solvent. The motion of the polymer is simulated by the 3D Langevin dynamics technique. The hydrodynamic interactions (HI) between the polymer and the fluid are taken into account by the lattice Boltzmann equation. Our polymer chain model representing the double-stranded DNA was first validated by comparing the diffusion coefficient obtained from the numerical results with the experimental and theoretical results. Then, we conducted numerical simulations of the biopolymer's translocation process by applying a theoretical formula for the net electrophoretic force acting on the part of the polymer residing in the pore. We compared quantitatively the translocation times and the velocities of different DNA lengths with the corresponding experimental results. Our simulation results are in good agreement with the experimental ones when the HI are considered explicitly.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.