Abstract

The numerical simulation of liquid jets ejecting from a set of elliptical orifices with different aspect ratios between 1 (circular) and 3.85 is performed for several Weber numbers, ranging from 15 to 330. The axis-switching phenomenon and breakup length of the jets are characterized by means of a volume of fluid (VOF) method, together with a dynamic mesh refinement model. This three-dimensional simulation is compared with a recent experimental work and the results agree well. It is concluded that for Weber numbers ranging from 15 to 100, by increasing the Weber number, the breakup length of the liquid jet increases, reaches a peak, and then decreases suddenly.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.