Abstract

As a complex nonlinear medium, gas discharge plasma can exhibit various nonlinear discharge behaviors. In this study, in order to investigate the chaos phenomenon in the subnormal glow region of an undriven direct current glow discharge, a two-dimensional plasma fluid model is established coupled with a circuit model as a boundary condition. Using the applied voltage as control parameter in the simulation, the complete period-doubling bifurcation and inverse period-doubling bifurcation processes in the oscillation region are found, and the influence of the applied voltage on the spatiotemporal distribution of plasma parameters during the bifurcation-remerging process is examined. In addition, the spatial distribution of the plasma parameters of the bifurcation-remerging process is also examined. Also, a series of periodic windows are present in the chaotic region, where the positions and relative order are generally consistent with the universal sequence. Additionally, this study showed that the intermittent chaos appears near the period-3 window, and the bursts appearing in the approximate periodic motion becomes more and more frequent as the control parameters move away from the saddle-node bifurcation point, which shows the typical type-I intermittent chaos characteristics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.