Abstract
An algorithm for simulating laser beam propagation in a turbulent atmosphere under conditions of thermal blooming for the case where the beam is formed by a multielement aperture is presented. Coherent and incoherent combining of elementary fields of the multielement aperture is considered. Based on numerical simulation, properties of a combined beam are analyzed in comparison with an equivalent Gaussian beam. A complex diffraction pattern is shown to appear upon coherent combinig as a result of superposition of fields formed by individual elements of the initial aperture. Average values of maximum intensity, both of the Gaussian beam and the combined laser beam, little differ from each other when the nonlinearity parameter N c > 1. Under conditions of strong turbulence and strong nonlinearity, integral radiation characteristics of combined beams are close to characteristics of the Gaussian beam, the effective size of which is determined by sizes of the combined beam. The intensity of combined laser beams in a turbulent atmosphere fluctuates upon incoherent combining of fields to a lesser extent as compared to coherent combining.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.