Abstract

The present study aims to identify effects due to uncertainties in effective dynamic viscosity and thermal conductivity of nanofluid on laminar natural convection heat transfer in a square enclosure. Numerical simulations have been undertaken incorporating a homogeneous solid–liquid mixture formulation for the two-dimensional buoyancy-driven convection in the enclosure filled with alumina–water nanofluid. Two different formulas from the literature are each considered for the effective viscosity and thermal conductivity of the nanofluid. Simulations have been carried out for the pertinent parameters in the following ranges: the Rayleigh number, Ra f = 10 3–10 6 and the volumetric fraction of alumina nanoparticles, ϕ = 0–4%. Significant difference in the effective dynamic viscosity enhancement of the nanofluid calculated from the two adopted formulas, other than that in the thermal conductivity enhancement, was found to play as a major factor, thereby leading to contradictory results concerning the heat transfer efficacy of using nanofluid in the enclosure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.