Abstract

A two-dimensional multi-component Lattice Boltzmann (LB) model based on kinetic theory for gas mixtures combined with a representative elementary volume (REV) scale LB algorithm based on the Brinkman equation for flows in porous media is developed to simulate the mass transport in the porous anode and cathode of SOFC. The concentration overpotential is calculated and compared with that obtained by the extended Fick’s Model (FM), the Dusty Gas Model (DGM), and the Stefan Maxwell Model (SMM), as well as the experimental results. It is concluded that LB method is a much more accurate method for the simulation of mass transfer within fuel cell electrodes. Moreover, the effects of different electrode geometrical and operating parameters on concentration polarization are also investigated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.