Abstract

The problem of stagnation point flow with heat transfer of an electrically conducting fluid impinging normally on a permeable axisymmetric surface in the presence of a uniform transverse magnetic field is analysed. The governing nonlinear differential equations and their associated boundary conditions are reduced to dimensionless form using suitable similarity transformations. Comparison with previously published work shows good agreement. Effects of the injection–suction parameter, magnetic parameter and Prandtl number on the flow and thermal fields are presented. The investigations show that the wall shear stress and heat transfer rate from the surface increase with increased applied magnetic field. An increase in the velocity and thermal boundary layer thicknesses is observed with an increase in the wall injection, while the velocity and thermal boundary layers become thinner when increasing the wall suction and applied magnetic field. doi:10.1017/S1446181111000708

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.