Abstract

Numerical simulation for flow, heat transfer and thermal stress for a 3 in. diameter liquid-encapsulated float zone growth of single-crystal InP is conducted by using the finite-element method under zero gravity condition. The results show that the crystal and feed rod rotation rate has a notable influence on the flow pattern in the melt. It also shows that the melt/crystal interface shape becomes more convex and the maximum value of thermal stress in the crystal reduces with increasing encapsulant thickness, decreasing pulling rate and decreasing the length of the melting zone.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.