Abstract
The robot dynamic model is essential for the precision and reliability of robot design, motion control, and simulation. A robot inertia matrix, whose elements are coefficients of joint accelerations within the robot equations of motion, plays an important role in the robot’s control design. During robot motion, elements of the inertia matrix are functions of robot configuration (robot joint positions). To facilitate the development of process models and to make an appropriate selection of motion control algorithms, it is useful to perform numerical simulations of inertia matrix elements for different robot trajectories. In this paper, numerical simulation of inertia matrix is presented for 6 DoF industrial robot with revolute joints for the programmed robot motion. Inertia matrix is obtained from the robot dynamical model developed by using modified recursive Newton-Euler algorithm. Based on the presented simulations, variation of effective inertias and magnitude and variation of cross-coupling effects in the robot inertia matrix are examined.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.