Abstract

Honeycomb ceramics is the key component of the thermal flow-reversal reactor, which is for oxidation of coal mine ventilation air methane. In this paper, numerical simulation method was used to study the honeycomb ceramics' heat transfer process, and the effects of temperature difference and hole side length on heat transfer and the resistance losses were investigated. The calculating results show that the temperature difference between the gas and honeycomb ceramics is larger, then the heat transfer effect is better, and the resistance loss is bigger. In the situation other parameters are the same, then the hole side length is longer, the heat transfer efficiency is lower, and the resistance loss is smaller.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.