Abstract

Flow dynamics in the stack and heat exchangers of a standing wave thermoacoustic engine is studied using two-dimensional direct numerical simulations. The numerical approach is based on asymptotic coupling in the low Mach number limit of a nonlinear dynamic model in the active cell with linear acoustics in the resonator. Computed results of the initial amplification and of the periodic regime eventually reached are shown. For the former, results show the existence of a critical temperature for which the system becomes unstable so that the engine starts, which is strongly dependent upon the load. Analysis of the results in the periodic regime shows the importance of vortex dynamics and the role of vortex shedding at sharp heat exchanger corners.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.